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Summary 

 

Induced polarization (IP) is an effective geophysical method 

for characterizing near-surface complex resistivity structures. 

To improve the precision and efficiency of massive-scale 

data processing, an intelligent signal processing technology 

based on machine learning is proposed. First, a database 

containing pure IP signals and simulated noise interference 

was generated. Then, a support vector machine classifier was 

trained to identify the noise by using the statistical 

characteristics of contaminated time series as inputs and the 

noise interference types as labels. Finally, four kinds of 

targeted signal processing technologies were integrated into 

a de-noising library to automatically separate interference. 

We tested the above framework and algorithms based on 

10000 simulated and 5000 practical data points. The 

identification accuracy of the four kinds of noise was 

97%~99%, and the proportion of high-quality (error < 5%) 

data was increased by approximately 20%~40%. The results 

show that artificial intelligence technology can quickly and 

effectively de-noise the large-scale IP data, so as to improve 

the quality of electrical information for deep mineral and 

petroleum exploration. 

 

Introduction 

 

Induced polarization (IP) is an effective geophysical 

technique for characterizing the complex resistivity structure 

of the shallow crust (down to -2 km) by injecting high-power 

current and acquiring array-induced polarization signals. 

Recently, many research institutions and companies have 

developed instruments with 2D distributed sensors, such as 

the Newmont distributed IP data acquisition system 

(NEWDAS), Quantec’s 3D system, the IRIS instrument 

FullWaver, the Distributed Spread Spectrum IP (SSIP) 

system and so on (Goldie, 2007; Alfouzan et al. 2020), for 

use in the field. The data acquisition and storage capabilities 

of IP exploration have achieved revolutionary breakthroughs. 

 

However, obtaining high-quality IP signals is still 

challenging in practical field surveys due to electromagnetic 

(EM) interference caused by natural and artificial sources. 

Four kinds of interference occur frequently in IP data, 

including trend drift interference caused by telluric currents 

and offset drift inside an instrument, strong discontinuous 

burst interference caused by machinery and equipment in 

mines, outliers caused by peak impulse interference, and 

Gaussian random noise caused by environmental 

disturbance (Olsson et al. 2016; Barfod, 2021). These 

interference types may occur at any time during an IP 

observation and distort the IP time series. Due to low 

efficiency and accuracy of the manual selection method, it is 

not suitable for massive-scale data. Scholars have proposed 

many de-noising methods to improve the IP data quality. In 

large-scale detection, the measured data include superposed 

noise interference types and pure IP signals. We need to 

combine various algorithms to address complex multisource 

noise interference. Additionally, every signal processing 

method inevitably loses useful signals, so it is very important 

to identify the type of noise interference in advance to 

choose the appropriate approach. The intelligent 

identification of noise interference in IP results is still rare in 

the existing literature. 

 

The Framework and Algorithms 

 

An intelligent de-noising framework (Figure 1) is developed. 

 

 
 

Figure 1: Intelligent anti-interference signal processing flow 

for a full-waveform IP time series. 

 

We address four common noise types in multi-period full 

waveform IP data, including low-frequency trend drift, 

strong burst interference, peak impulse outliers and Gaussian 

random noise. We generated an IP signal and noise 

interference database, trained a support vector machine 
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model to classify and identify noise, and finally integrated 

four targeted signal processing technologies including a 

multi-period de-trending algorithm, correlation analysis 

algorithm, robust smoothing filtering algorithm and 

principal component analysis (PCA)-wavelet analysis de-

noising algorithm, into a de-noising library to 

comprehensively address complex multisource interference. 

 

Sample Database 

In IP prospecting, the most commonly used emission current 

waveforms are periodic waves (such as rectangular waves, 

bipolar waves, or pseudorandom waves). According to the 

Fourier transform theory, any periodic current can be 

decomposed into the summation of sine and cosine series. In 

this paper, we mainly analyze the current of the fifth-order 

pseudo-random sequence. For a medium with an IP effect, 

the measured resistivity is a complex number that varies with 

the frequency and can be represented by the Cole-Cole 

model (Pelton et al. 1978). The IP voltage signal was 

calculated by applying the amplitude shift and phase shift of 

the complex resistivity to the excited current signal. We can 

generate the induced polarization time series using the above 

formula based on the given Cole-Cole model and the 

emission current parameters. 

 

Additionally, four kinds of common noise interference in IP 

exploration were generated by mathematical simulation. The 

low-frequency trend drift interference was simulated by the 

superposition of the sine function, polynomial function, 

linear function and exponential function. Short-time strong 

burst interference was simulated by a Gaussian signal with 

an overall amplitude larger than that of a normal signal and 

duration less than that of the given time series. Peak impulse 

outlier interference was simulated by discretely processing 

Gaussian signals with amplitudes much higher than that of a 

normal signal. Background random noise was simulated by 

a Gaussian signal with an overall amplitude lower than that 

of a normal signal and duration the same as that of the given 

time series. Through random combinations of the 4 kinds of 

noise interference, 12 kinds of mixed noise were generated, 

and a total of 16 kinds of noise interference were simulated 

and added to the IP signal. 

 

Support Vector Machine 

The SVM have been widely applied in geophysical fields. 

The basic SVM model is a classic linear binary classification 

model. For   data points with classification labels (1 or -1), 

the SVM algorithm is to find a boundary curve that keeps the 

two types of points as separate as possible, namely, that 

maximizes the sum of the distances from all the data points 

to the boundary curve. Through derivation, the SVM is 

finally transformed into an optimization problem; a value is 

found that minimizes the objective function. In practice, 

nonlinear multi-classification problems are common, and 

they can be solved by training multiple dichotomous models 

and mapping the samples that cannot be linearly segmented 

to a higher dimensional space. The formula for nonlinear 

SVM regression replaces the inner product of the predictors  

 

In theory, an SVM model can be trained to classify and 

identify noise by taking the contaminated IP signal as the 

input and the corresponding noise interference type as the 

output. Due to the high dimensionality of IP time series, 

model training requires a large network structure and yields 

high computing costs. To improve the training efficiency, we 

use the second order statistical features of the original time 

series as inputs instead of directly using the complete time 

series as the input. We segmented the contaminated IP signal 

by period and extracted eight statistical characteristics for 

each data segment, including five time-domain parameters 

(the mean value, standard deviation, current-voltage 

correlation, outlier ratio and roughness) and three frequency-

domain parameters (the fundamental frequency amplitude, 

fundamental frequency phase and major frequency energy 

ratio). 

 

Integrated De-Noising Algorithms 

Because noise interference in practical exploration is 

complex and variable, a single method cannot fully suppress 

all types of noise. Four signal processing techniques are 

improved and integrated into a de-noising method library. 

First, we developed a de-trending method based on the 

periodicity of the IP signal. For multi-period time series 

without trend drift, the sampling points at the same position 

in different periods should be approximately equal. 

Therefore, we sampled various data points at the same 

position in different periods, interpolated them to obtain the 

fitting trends for the whole time period, and stacked all the 

fitting trends to approximate the real trend drift. 

 

Next, we used a correlation analysis algorithm to remove 

strong burst interference. In IP exploration, there is a strong 

correlation among voltage data from various periods, and 

burst noise will dramatically reduce this correlation. We 

divided the original voltage data into several segments. For 

each data segment, we calculated the maximum correlation 

coefficient between it and other data segments. When the 

maximum correlation coefficient was less than 0.5, the data 

segment was considered to contain serious interference and 

was replaced by stacking other data segments. 

 

Subsequently, we used robust smooth filtering to eliminate 

outliers caused by peak impulse interference. A moving-

average filter was used to smooth data by replacing each data 

point with the average of the neighboring data points defined 

within a given window. For data in a smooth window, the 

robust mean is calculated by iterative reweighting algorithm 

according to the maximum likelihood criterion (Huber, 

1964). The robust statistical method can automatically 
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reduce the weights of outliers and smooth time series 

according to the distribution of the original data. 

 

Finally, we used the principal component analysis-wavelet 

analysis method to suppress Gaussian random noise. A 

multi-period signal can be reorganized into a matrix with one 

period for each column. The signal components are mainly 

concentrated in the principal component of the matrix, and 

the Gaussian noise is uniformly distributed in all 

components. Therefore, the signal component can be 

extracted by singular value decomposition and 

reconstruction using large eigenvalues. Wavelet analysis 

directly decomposes the original signal into multiple scales, 

with the large-scale component representing the signal and 

the small-scale component representing the noise. Therefore, 

the signal component can also be extracted by wavelet 

decomposition and reconstructed using the large-scale 

component. 

 

Testing of Massive-Scale Simulated Data 

 

We used a simulated massive-scale dataset to train the SVM 

model and used another dataset to test the accuracy of the 

model in noise identification and separation. We simulated 

10,000 sets of pure IP signals. The emission current was a 

five-frequency pseudorandom wave, the sampling rate was 

64 Hz, the period was 16 seconds, and a total of 20 periods 

of time series were acquired. We randomly generated four 

kinds of noise interferences and combined them. A total of 

160,000 contaminated signal samples were obtained by 

adding various noise types to the pure IP signals. Figure 2 

shows IP waveforms with different noise interference 

combinations. Then, we used the statistical characteristics of 

the noisy signals as the inputs and the noise type as the 

output to train the SVM model. The time for sample 

generation was approximately 1 hour, and the time for model 

training was approximately half an hour. 

 

 

Figure 2: IP waveform with different noise interference 

combinations. n1: low-frequency trend interference; n2: 

strong burst interference; n3: peak impulse interference; and 

n4, background random noise interference. 

 

We again randomly generated 10,000 sets of noisy signals 

for testing. The above trained SVM model was used to 

predict the noise type and call the corresponding signal 

processing techniques in the de-noising method library to 

eliminate noise interference. The recognition accuracies for 

the four types of noise interference were 99.19%, 99.89%, 

99.63%, and 97.37%. Figure 3 shows the processing flow for 

IP data with various kinds of noise interference. The signal 

in Figure 3(a1) contains only Gaussian random noise, and 

only the PCA-wavelet method is used for noise reduction. 

The signal in Figure 3(b1) contains low-frequency trend drift 

and strong burst interference, which are processed with the 

de-trending algorithm and correlation analysis algorithm, 

respectively. The signal in Figure 3(c1) contains low-

frequency trend drift, strong burst interference and peak 

impulsive interference, which are processed by the de-

trending algorithm, correlation analysis algorithm and robust 

smoothing filtering algorithm, respectively. The signal in 

Figure 3(d1) contains all four interference types and is 

processed by the de-trending algorithm, correlation analysis 

algorithm, robust filtering algorithm and PCA-wavelet 

method. Figure 3 only shows the signal processing flows for 

the four kinds of noise combinations. The other 12 kinds of 

noise combinations yielded similar results. We also 

calculated the mean square relative error between the 10000 

contaminated signals and real signals. Before noise 

reduction, the mean square relative error between the noisy 

signal and the real signal was approximately 170%. After de-

noising, the mean square relative error between the signal 

and the real signal was reduced to approximately 8%. 

 

 
Figure 3: Processing of IP data with various noise 

interference combinations. (a1)~(d1): the contaminated IP 
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data; (a2)~(d2): IP data after de-trending; (a3)~(d3): IP data 

after correlation analysis processing; (a4)~(d4): IP data after 

robust smooth filtering; (a5)~(d5): IP data after PCA-

wavelet de-noising. 

 

Processing of Practical Data 

 

The intelligent anti-interference processing framework and 

algorithm were applied to a practical dataset acquired in the 

ZXK lead-zinc ore concentration area in Tibet, China. To 

characterize the electrical structure of the shallow surface, 

an array-induced polarization exploration system that 

included 50 survey lines with 100 survey points per line was 

arranged using a gradient array. The survey line spacing was 

40 m, and the survey point spacing was 20 m. The potential 

electrode spacing MN was 20 m. The current electrode 

spacing AB was 5000 m. For the injected current and 

acquired IP signal, the sampling frequency was 64 Hz, the 

period of one waveform was 256 s, and the measurement 

time was over an hour. Almost all the original full-waveform 

IP data were threatened by electromagnetic interference 

caused by artificial and natural sources. We first extracted 

the statistical characteristics of each time series, used the 

above trained SVM model to predict the noise interference 

type, and then called the corresponding signal processing 

method to reduce the noise. Finally, stacking and a Fourier 

transform were applied to the de-noised signal, and the Cole-

Cole model parameters were estimated. After reprocessing 

each survey point, the false anomalies in the maps were 

removed. 

 

 
 

Figure 4: The plan maps of apparent Cole-Cole model 

parameters in the whole survey area. (a1), (b1), (c1) and (d1) 

are the plan maps of apparent resistivity, apparent 

chargeability, apparent frequency dependence and the 

apparent time constant without de-noising processing; (a2), 

(b2), (c2) and (d2) are the plan maps after de-noising; and 

(a3), (b3), (c3) and (d3) are the boundary demarcations of 

the plane maps. 

 

The statistical errors of the above 5,000 survey points were 

also calculated. For apparent resistivity, through anti-

interference processing, the proportion of high-quality data 

(error < 5%) increased from 80% to 95%. For apparent 

chargeability, the proportion of high-quality data (error <5%) 

increased from 48% to 92%. For the apparent frequency 

correlation coefficient, the proportion of high-quality data 

(error <5%) increased from 32% to 82%. For the apparent 

time constant, the proportion of high-quality data (error <5%) 

increased from 10% to 55%. It took approximately 8 hours 

to process these data by directly invoking all signal 

processing techniques without noise identification. By using 

the SVM to classify and identify time series, unnecessary 

processing was avoided, and the total time was 

approximately two hours. 

 

Conclusions 

 

A massive-scale geophysical IP signal processing method 

based on machine learning is developed in this paper. An 

SVM classifier and a de-noising method library are used for 

noise recognition and separation, respectively. The testing 

results based on 10,000 sets of simulated data show that the 

noise-recognition accuracy of the SVM can reach 97%~99%; 

de-noising based on multiple algorithm combinations can 

also reduce the signal error from 170% to 8%. After 

processing 5,000 sets of practical data from a mining area in 

Southwest China, the proportion of high-quality data 

increased by approximately 20%~40%, and a preliminary 

near-surface electrical structure was obtained. Both the 

simulated data and the practical measurement data verify the 

effectiveness of this method. The signal processing 

framework and algorithm proposed in this paper improve the 

accuracy, speed and automation level of massive-scale data 

processing. 
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