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ABSTRACT

In near surface electrical exploration, it is often necessary to estimate the Cole-Cole model parameters

according to the measured multi-frequency complex resistivity spectrum of ore and rock samples in

advance. Parameter estimation is a nonlinear optimization problem, and the common method is least

square fitting. The disadvantage of this method is that it relies on initial value and the result is unstable

when data is confronted with noise interference. To further improve the accuracy of parameter

estimation, this paper applied artificial neural network (ANN) method to the Cole-Cole model

estimation. Firstly, a large number of forward models are generated as samples to train the neural

network and when the data fitting error is lower than the error threshold, the training ends. The

trained neural network is directly used to efficiently estimate the parameters of vast amounts of new

data. The efficiency of the artificial neural network is analyzed by using simulated and measured

spectral induced polarization data. The results show that artificial neural network method has a faster

computing speed and higher accuracy in Cole-Cole model parameter estimation.

INTRODUCTION

Induced polarization (IP) is a physical and

chemical phenomenon that occurs when the under-

ground medium is stimulated by external current

(Wait, 1959). As most metal-rock ores such as gold,

silver, lead, zinc, chromium, copper and iron have

strong induced polarization effect, IP method is widely

used in mineral exploration and petrophysical survey

(Zonge et al., 1975). The resistivity of rock ore

specimens containing induced polarization effect is a

complex number varying with frequency. The Cole-

Cole model can be used to fit the multi-frequency

impedance information of various rocks and ores

(Cole and Cole, 1941; Pelton et al., 1978). In practical

exploration, it is necessary to estimate the Cole-Cole

model parameters based on the measured multi-

frequency complex resistivity and to infer the material

composition and internal structure of the specimen.

At present, scholars have proposed many quasi-

linear methods for parameter estimation of Cole-Cole

model, including direct inversion method (Xiang et

al., 2001), nonlinear least squares method (Freeborn

et al., 2012) and least absolute deviation (LAD)

method (Yang et al., 2013). These methods are

developed from the least-square estimation algorithm

and have stronger anti-noise capability. Bayesian

inference using Markov-chain Monte Carlo simulation

is also widely used for IP parameter estimation

(Ghorbani et al., 2007; Chen et al., 2008; Bérubé et

al., 2017). This algorithm can obtain the uncertainty

of the estimated IP parameters. Some global optimiza-

tion algorithms are also used for parameter inversion,

such as genetic algorithm (Miranda et al., 2008),

flower pollination algorithm (FPA), moth-flame opti-

mizer (MFO) (Yousri et al., 2017), and modified

particle swarm optimization (MPSO) algorithm (Liu

et al., 2018). These approaches are independent of the

choice of initial values and also show strong anti-noise

abilities. In conclusion, parameter estimation of Cole-

Cole model is a highly nonlinear optimization prob-

lem. It is a developing trend to reduce the depen-

dence of the algorithm on initial value and improve its

anti-interference ability and computing speed. The

above methods have been effectively applied in

synthetic and laboratory SIP data. However, their

computing speed and anti-noise capability still need to

be further improved, because noise interference is

very complex and the amount of data to be processed

is also increasing.

Recently, the development of machine learning

algorithms represented by artificial neural network

(ANN) provides new ideas for parameter estimation.

Compared with the conventional optimization algo-
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rithm, machine learning algorithms have stronger

nonlinear fitting capability and migration learning

ability. They have been widely used in parameter

estimation in many fields, such as astrophysics,

chemistry, medicine, petroleum science and so on

(Dua, 2011; Hatamleh et al., 2015; Sadeghi-Goughari

et al., 2016; George et al., 2018; Wang et al., 2020; Liu

et al., 2020; Yan et al., 2020). To improve the

computational efficiency, this paper uses the artificial

neural network algorithm for Cole-Cole model

parameter estimation of laboratory ore and rock

samples.

ARTIFICIAL NEURAL NETWORK
PARAMETER ESTIMATION

The interpretation of geophysical prospecting

results depends on the physical properties of rocks

and ores. In laboratory, the complex resistivity

spectrum of various specimens is obtained by multi-

frequency scanning measuring. We need to estimate

the Cole-Cole model parameters to judge the compo-

sition and structure of the samples. The Cole-Cole

model was first proposed by Cole and Cole (1941),

and Pelton et al. (1978) firstly introduced it into

geophysics. The formula is as follows:

q xð Þ ¼ q0 1�m
1

1þ jxsð Þc
� �� �

ð1Þ

where, q0 is resistivity at 0 Hz, m is chargeability, c is

frequency correlation coefficient and s is time

constant, which jointly characterize the conductivity

and induced polarization effect. In addition, x is the

angular frequency, j is the complex unit, and q(x) is

the calculated complex resistivity.

Artificial neural network is composed of an input

layer, multi-hidden layers and an output layer, which

can be used to fit nonlinear function by training a

large number of groups of input XA and output YA

samples (Hornik, 1991). For a hidden layer, the

output vector Yl is the weighted sum of the input

vector Xl ,

Yl¼f ðWlXl þ ul Þ ð2Þ
where Wl is the weight coefficient of the hidden

layer, f is an activation function, and ul is a bias

coefficient (Dongare et al., 2012; Gupta, 2013). The

output of the current hidden layer is also the input of

the next hidden layer. After integrating all the hidden

layers, the simulated system output YS is obtained.

Finally, the optimal weights Wl and ul of all the

hidden layers are solved by back-propagating errors

algorithm to minimize the difference C between all

the simulated output YS and actual output YA

(Rumelhart et al., 1986):

C ¼
XN
i¼1

1

2
YAfig � YSfigk k2 ð3Þ

where, N is the number of the training samples.

Then, other input and output samples are used to test

the network system. When the testing error is lower

than error tolerance, the neural network system can

be used to predict new output. The Cole-Cole model

parameter estimation algorithm based on ANN mainly

includes three steps: First, a large number (usually

thousands) of Cole-Cole model parameters are

randomly generated, and then the multi-frequency

complex resistivity spectrum are calculated by using

equation 1 at given frequencies. Secondly, the multi-

frequency complex resistivity and the corresponding

Cole-Cole model parameters are taken as input and

output samples respectively to train a neural network

model. Finally, the trained optimal neural network

system after testing is directly used to predict new

output according to corresponding new input data.

Figure 1 shows the schematic diagram of Cole-Cole

model parameter estimation based on artificial neural

network.

Additionally, the training effect of artificial neural

network is further improved by adopting cross-

validation, adding random disturbances, and data

normalization. Firstly, during the training, all samples

are randomly divided into training group, testing

group and cross-validation group by 70%, 15% and

15%. The net is to try to use different training sets and

validation sets to conduct multiple groups of different

training and validation for the model to prevent

overfitting. Secondly, we add about 3% random

disturbance to the input samples, and then conduct

training to enhance the stability and anti-interference

ability of the network. Thirdly, we take logarithm of

the input and out samples for normalization because

that the value range of the model parameters vary

widely.

SIMULATED COMPLEX RESISTIVITY
SPECTRUM DATA TESTING

Firstly, we test the ANN algorithm by using

simulated data. 10,000 groups of Cole-Cole model

parameters are randomly generated, where the range

of zero-frequency resistivity is 0.01~10,000 ohm-m,

the value range of chargeability is 0~1, the range of

frequency correlation coefficient is 0~1, and the

range of time constant is 0.0001~10,000 s. The

frequency range is 2�10~210 Hz, and then the

amplitude and phase of multi-frequency complex

resistivity are calculated by using the formula (1).

Then, 5,000 sets of models are used to train neural

networks, and another 5,000 sets of models are used

to test the inversion accuracy. Considering that the
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amplitude of complex resistivity is sensitive to the

zero-frequency resistivity parameter (q0) in the Cole-

Cole model, and the phase of complex resistivity is

sensitive to the induced polarization parameters (m, c,

s), we train two networks to estimate the resistivity

and induced polarization parameters separately.

The neural network consists of three hidden layers

with 12 units in each layer. Levenberg-Marquardt

algorithm is used for iterative optimization. Finally,

after about 120 iterations, the optimal neural net-

works are obtained, the total time is about 13 s. Then,

another 5,000 groups of test data are used for testing.

Firstly, we directly use the test data without noise

interference to verify the obtained network, and then,

we add 3% noise interference to the data to test the

network. Figure 2 shows the comparison of estimated

Figure 1 A schematic diagram of Cole-Cole model parameter estimation based on artificial neural network.

Figure 2 Comparison between the estimated and real model parameters of 100 testing samples; Left: the input data do not contain noise
interference; Right: the input data are interfered by 3% random noise.
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parameters and real parameters of 100 randomly

selected data sets.

To compare the calculation accuracy and time, the

least squares algorithm is also used to estimate the

Cole-Cole model parameters of these 5,000 test data

with and without adding random noise respectively.

We then calculate the percentage of low-error data

respectively. Low-error means that the absolute error

of the logarithmic resistivity is less than 0.25, the

absolute error of the chargeability is less than 0.05, the

absolute error of the frequency correlation coefficient

is less than 0.05, and the absolute error of the

logarithmic time constant is less than 0.25. Table 1

shows the error statistics and the calculation time of

the two methods. All the calculations are done on an

Intel core i5 processor at 2.50 GHz. Due to that the

training network can be directly applied in testing

data, the inversion takes less than a second. When the

testing samples contain no noise interference, the

accuracy of ANN is comparable to that of the least-

square method. However, when the testing sample

contains noise interference, the accuracy of ANN

algorithm is higher than that of the least squares

method. For both methods, the estimation accuracy of

resistivity and frequency correlation coefficient is

higher than that of frequency correlation coefficient

and time constant.

PRACTICAL COMPLEX RESISTIVITY
SPECTRUM DATA PROCESSING

The ANN is further used to estimate the Cole-Cole

model parameters from multifrequency complex

resistivity spectrum of various kinds of ore-rock

samples collected in a mine area, Tibet, China. Figure

3 shows the physical pictures of ore and rock

specimens. Specimens No.1 is large-grain pyrite with

purity of 30%, other compositions are mainly carbo-

naceous slate, feldspar and impurities. Specimens No.2

and specimens No.3 are dense massive pyrite with

purity of 70% and 90% respectively, other components

are calcite and feldspar. Specimens No.3 is also dense

massive pyrite with purity of 90%, Other components

are feldspar and impurities. Specimens NO.4, speci-

mens NO.5 and specimens NO.6 are galena samples

with purity of 60%, 80% and 90% respectively, other

components are calcite and feldspar. Specimen NO.7

is sphalerite with purity of 50%, embedded with

massive and fine pyrite, with a small amount of

carbonaceous slate and feldspar. Specimens No.8 and

specimen NO.9 are carbonaceous slate samples with

purity of 80% and 90% respectively, with a small

amount of veined pyrite embedded. Specimen NO.10

is magnetite with a purity of 90%, other components

are some impurities. The estimated parameters are

shown in Table 2. We also calculate the multi-

frequency complex resistivity according to the esti-

mated parameters and compare them with the

observed data in Fig. 4. The processing results of the

practical data show that ANN algorithm can effectively

identify different types of complex resistivity curves

and estimate the parameters of Cole-Cole model.

CONCLUSION

In this paper, we developed an artificial neural

network algorithm for the Cole-Cole model parameter

estimation of various ore and rock samples. The

testing results of simulated data show that the new

algorithm has higher accuracy, when measured data is

contaminated by noises. We also showed how this

method was efficiently used for the parameter

estimation of various ore and rock samples collected

in a mine area, in Tibet, China. The estimated

frequency correlation coefficients and time constants

are distinguishable for these specimens. The research

in this paper shows that artificial neural network is

helpful to improve the accuracy, speed and automa-

tion level of rock and ore spectrum parameter

estimation.

Table 1 Computation time and percentage of low-error data for artificial neural network (ANN) and least square (LS) methods.

Method log10(q)_error 0.25 (%) m_error 0.05 (%) c_error 0.05 (%) log10(s)_error 0.25 (%) Time cost (s)

ANN (without noise) 99.52 94.98 99.86 91.58 0.21

LS (without noise) 99.76 95.76 99.32 94.02 173.25

ANN (with 3% noise) 99.36 92.80 99.86 89.30 0.21

LS (with 3% noise) 93.50 86.42 89.18 80.62 190.54

Table 2 Cole-Cole model parameters estimated based on multi-
frequency complex resistivity of ten conductive rock ore samples.

Specimen number Log10(q) m c Log10(s)

No.01 2.5612 0.1727 0.4459 0.0601

No.02 2.5260 0.6407 0.4005 0.2581

No.03 2.7713 0.6001 0.4053 1.1987

No.04 1.6493 0.3106 0.6233 0.3011

No.05 1.8680 0.5778 0.4878 0.9931

No.06 1.6234 0.2164 0.5645 0.9274

No.07 2.4373 0.6272 0.2821 1.5013

No.08 2.3334 0.7906 0.3529 3.1141

No.09 2.7664 0.8960 0.3191 3.0795

No.10 1.6452 0.3185 0.5600 -0.5213
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Figure 3 Physical pictures of ore and rock specimens: a) Large-grain pyrite with 30% content; b) Pyrite specimen with 70% content; c) Pyrite
specimen with 90% content; d) Galena specimen with 60% content; e) Galena specimen with 80% content; f) Galena specimen with 90%
content; g) Sphalerite specimen with 5% content; h) Carbonaceous slate samples with 80% content; i) Carbonaceous slate samples with 90%
content; and j) Magnetite with 90% content.
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